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Abstract: This  letter  presents  the fabrication of  InP double heterojunction bipolar  transistors  (DHBTs)  on a  3-inch flexible  sub-
strate  with  various  thickness  values  of  the  benzocyclobutene  (BCB)  adhesive  bonding  layer,  the  corresponding  thermal  resist-
ance of  the InP DHBT on flexible substrate is  also measured and calculated.  InP DHBT on a flexible substrate with 100 nm BCB
obtains cut-off  frequency fT =  358 GHz and maximum oscillation frequency fMAX =  530 GHz.  Moreover,  the frequency perform-
ance  of  the  InP  DHBT  on  flexible  substrates  at  different  bending  radii  are  compared.  It  is  shown  that  the  bending  strain  has
little effect on the frequency characteristics (less than 8.5%),  and these bending tests prove that InP DHBT has feasible flexibil-
ity.
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 1.  Introduction

Flexible electronics have unique advantages of  flexibility,
ductility  and  portability,  which  have  wide  application  pro-
spects in communication information, energy, medical and oth-
er  fields[1−6].  However,  the  future  application  of  high  fre-
quency communication and wireless internet of things puts for-
ward  higher  requirements  on  the  frequency  of  flexible  elec-
trons. The current traditional flexible electronic devices and cir-
cuits  cannot  meet  the requirements  of  larger  bandwidth and
higher  speed,  because  these  flexible  electronic  devices  have
low  carrier  mobility  and  saturation  speed  in  a  higher  fre-
quency  range[7−9].  As  a  result,  high  performance  RF  transist-
ors  and  circuits  with  higher  speeds  and  frequencies  are  in
great demand.

At  present,  various  types  of  flexible  electronic  materials
and  devices  have  been  developed  and  applied,  such  as
graphene/carbon transistor, GaAs HBT/HEMT, Si MOSFET, etc.,
all  of  which  have  their  own  unique  advantages  and  applica-
tion  fields[10−17].  We  have  reported  a  fabrication  method  for
transferring InP DHBTs onto a  flexible  substrate  using benzo-
cyclobutene (BCB) bonding technology lately. The flexible sub-
strate InP DHBT device has the cut off frequency fT = 337 GHz
and oscillation frequency fMAX = 485 GHz[18].  In this paper, we
continue  to  present  an  optimized  process  of  the  BCB  adhes-
ive layer  between InP DHBT and the flexible  substrate,  which
can operate at higher cut off frequency fT = 358 GHz and oscil-

lation  frequency fMAX =  530  GHz,  the  thermal  resistance  (Rth)
of  InP  DHBT  on  flexible  substrate  is  estimated.  In  addition,
the RF performance under different bending radii is also com-
pared.

 2.  Fabrication process

The  process  of  fabricating  InP  DHBT  devices  on  flexible
substrate  has  been  reported  in  previous  work  with  identical
device  geometry[18],  while  the  standard  0.5 μm  process  is
used for InP DHBT devices. Fig.  1 shows a schematic diagram
of InP DHBT devices on flexible substrate.

The  BCB  adhesive  layer  is  sandwiched  between  InP
DHBTs  layers  and  flexible  substrate,  the  thermal  conductivity
of BCB is 0.3, and InP is 68 W/(m·K), the flexible substrate ma-
terial  used in  this  letter  is  boron nitride  (BN)  composite  poly-
mer  material,  which  has  a  thermal  conductivity  greater  than
8 W/(m·K). Considering the BCB having low thermal conductiv-
ity, it is necessary to evaluate the different thickness of BCB ad-
hesive  layer  which  affect  the  RF  and I–V performances  of  InP
DHBT.

The  BCB  adhesive  layer  is  spun  onto  two  groups  of  3-
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Fig. 1. (Color online) The schematic diagram of InP DHBT device on flex-
ible substrate.
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inch  flexible  substrates  with  BCB  thickness  of  100  nm  and
1 μm,  respectively.  After  the  InP  DHBT  device  is  bonded  to
the  flexible  substrate,  the  BCB  thickness  under  the  InP  DHBT
device  is  measured  by  the  focused  ion  beam  (FIB),  as  shown
in Figs. 2(a) and 2(b), which shows the FIB image of InP DHBT
on  the  flexible  substrate,  the  thickness  of  BCB  can  be  meas-
ured separately.

 3.  Results and discussions

To  make  a  heat  dissipation  evaluation  of  InP  DHBT
device  on  flexible  substrate,  thermal  resistance  (Rth)  of  InP
DHBT  was  measured.  A  large  output  current  leads  to  an  in-
creasing  amount  of  self-heating. Fig.  3 shows  the  calculated
and experimental Rth of  fabricated InP DHBT with the emitter
area  of AE =  0.5  ×  5 μm2.  The  current  gain  and  emitter-base
voltage vary with temperature to evaluate thermal  resistance
of the device, Rth is expressed by the following relation[19]: 

Rth = 
ϕ

ΔVbe
Pdiss

. (1)

The ϕ is  a  thermo-electrical  coefficient  expressed  from
Gummel  plots  with  different  testing  temperatures, Vbe is  the
base-emitter  voltage  for  a  constant  collector  current,  the ϕ
can be expressed as ΔVbe = ϕ · ΔT, the ΔT in junction temperat-
ure versus the backplate temperature for a certain power Pdiss

dissipated in the InP DHBT. And the Pdiss dissipated power vari-
ation with Pdiss = ΔVce · Ic.  The measured ϕ is about 0.84 mV/K
of  InP  DHBT  device.  The  measured Rth of  a  conventional  InP
DHBT  device  on  the  InP  substrate  is  3505  K/W,  while  the  InP

DHBT  device  on  a  flexible  substrate  with  100  nm  BCB  exhib-
its Rth of  6410  K/W,  which  is  about  an  82.8%  increase.  And
the InP DHBT device on a flexible substrate with 1 μm BCB ex-
hibits Rth of  7550 K/W, which is  attributed to the low thermal
conductivity of flexible substrate and BCB.

I–V measurements  of  flexible  substrate InP DHBT devices
were  performed  on  a  semiconductor  wafer  probe, Fig.  4
shows  the  common  emitter IC–VCE characteristics  of  flexible
substrate  InP  DHBT  devices  with  two  different  thickness  of
BCB.  It  can be confirmed that  the IC–VCE characteristics  of  InP
DHBT devices with different BCB thicknesses are degraded to
a certain extent, and the BCB with the thickness of 1 μm is de-
graded  more  seriously,  this  result  corresponds  to  an  increase
in thermal resistance.

The  RF  performance  of  flexible  substrate  InP  DHBTs  are
measured  by  vector  network  analyzer,  which  using  off-wafer
line-line-reflect-match  calibration,  at  the  same  time,  the
device  pads  are  de-embedded  with  open/short  calibration
structures[20–23]. Fig.  5 shows  the  InP  DHBT  short-circuit  cur-
rent  gain  |h21|2 and  Mason’s  unilateral  gain U on  frequency
function,  when  the VCE =  1.5  V  and  collector  current IC =  15
mA.  Using  extrapolation  of U and  |h21|2 with  a  –20  dB/dec
roll-off yields method, which shows the cut off frequency fT =
395  GHz,  the  maximum  oscillation  frequency fMAX =  630  GHz

 

Fig. 2. (a) FIB cross-sectional image of InP DHBT device on flexible sub-
strate with 1 μm BCB. (b) FIB cross-sectional image of InP DHBT device
on flexible substrate with 100 nm BCB.
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Fig. 3. (Color online) Experimental and calculated Rth for InP DHBT and
flexible substrate InP DHBT.
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of  the  InP  DHBT  on  InP  substrate.  For  the  flexible  substrate
InP DHBT with 100 nm BCB, the cut off frequency fT and max-
imum oscillation fMAX are 358 and 530 GHz respectively.

The  RF  performance fT and fMAX of  the  flexible  substrate
InP  DHBT  device  in  this  paper  are  compared  with  the  per-
formance  of  other  flexible  transistors  reported  previously  in
Refs.  [13, 15, 17, 18, 24–27],  as  shown  in Table  1.  Our  work
shows  the  highest  RF  frequency  performance  of  flexible
devices to date, besides confirms the potential of flexible sub-
strate InP DHBT for high frequency applications.

At the same time, in order to explore the influence of flex-
ible substrate bending on the high-frequency performance of
InP DHBT devices, the 3-inch flexible substrate InP DHBT is pas-
ted  on  curved  glass  with  a  certain  bending  radius[28−30].  The
bending  degree  of  flexible  substrate  depends  on  the  bend-
ing  radius  of  curved  glass,  as  shown  in Fig.  6(a).  Three  differ-
ent bending radii of 70, 30 and 15 mm are set to measure the
high  frequency  performance  of  the  flexible  substrate  InP
DHBT. Figs.  6(b)  and 6(c)  show  a  comparison  of  the  fre-
quency  characteristics  of  InP  DHBT  at  these  three  bending
radii.  It  is  observed that a decrease in the bending radii  leads
to a slight degradation of the device's high-frequency perform-
ance,  although  in  a  case  there  is  a  small  increase  in fT as  the
bending  increases.  The fT and fMAX of  the  device  in  the  bent
state  are  reduced  by  about  8.5%  compared  with  that  in  the
flat  state.  The  performance  of  InP  DHBT  devices  decreases
slightly under different bending states,  which may be related
to strain, it affects the carrier mobility and other properties of
InP DHBT.

 4.  Conclusion

A  standard  0.5 μm  process  of  InP  DHBT  is  fabricated  on
3-inch flexible substrate using epitaxial lift-off and BCB adhes-
ive bonding techniques. Different thickness values of BCB ad-
hesive  bonding  layer  and  the  corresponding  thermal  resist-
ance  are  investigated,  besides  high  cut-off  frequency fT =
358  GHz  and  maximum  oscillation fMAX =  530  GHz  are  ob-
tained.  Moreover,  the  RF  performance  under  different  bend-
ing  radii  is  also  compared,  and  the  results  show  that  the  RF
performance of the flexible InP DHBT is less affected by bend-
ing strain. These results further confirm the possibility that flex-
ible InP DHBT will be used in flexible RF circuits.
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